A Family of Variable-Metric Methods Derived by Variational Means

By Donald Goldfarb

Abstract. A new rank-two variable-metric method is derived using Greenstadt's variational approach [Math. Comp., this issue]. Like the Davidon-Fletcher-Powell (DFP) variable-metric method, the new method preserves the positive-definiteness of the approximating matrix. Together with Greenstadt's method, the new method gives rise to a one-parameter family of variable-metric methods that includes the DFP and rank-one methods as special cases. It is equivalent to Broyden's one-parameter family [Math. Comp., v. 21, 1967, pp. 368–381]. Choices for the inverse of the weighting matrix in the variational approach are given that lead to the derivation of the DFP and rank-one methods directly.

In the preceding paper [6], Greenstadt derives two variable-metric methods, using a classical variational approach. Specifically, two iterative formulas are developed for updating the matrix H_k , (i.e., the inverse of the variable metric), where H_k is an approximation to the inverse Hessian $G^{-1}(x_k)$ of the function being minimized.*

Using the iteration formula

$$H_{k+1} = H_k + E_k$$

to provide revised estimates to the inverse Hessian at each step, Greenstadt solves for the correction term E_k that minimizes the norm

$$N(E_k) = \operatorname{Tr} (W E_k W E_k^T)$$

subject to the conditions

$$E_k^T = E_k$$

and

$$(2) E_k y_k = \sigma_k - H_k y_k .$$

W is a positive-definite symmetric matrix and Tr denotes the trace.

The first condition is a symmetry condition which ensures that all iterates H_k will be symmetric as long as the initial estimate H_0 is chosen to be symmetric. The second condition ensures that the updated matrix H_{k+1} satisfies the equation

$$H_{k+1}y_k = \sigma_k$$

and hence, that the method is of the "quasi-Newton" type [1].

Received June 30, 1969, revised August 4, 1969.

AMS Subject Classifications. Primary 30, Secondary 10.

Key Words and Phrases. Unconstrained optimization, variable-metric, variational methods, Davidon method, rank-one formulas.

^{*} The reader is referred to Greenstadt's paper [6] for a more detailed discussion of variable-metric methods and for definitions of some of the terms used here.

If the function being minimized were quadratic, H_{k+1} would operate on the vector y_k as would the matrix G^{-1} . The norm chosen by Greenstadt is essentially a weighted Euclidean norm.

Solving this constrained minimization problem using Lagrange multipliers, Greenstadt obtained the following formula for E_k :

$$E_k = \frac{1}{(y^T M y)} \left\{ \sigma y^T M + M y \sigma^T - H y y^T M - M y y^T H - \frac{1}{(y^T M y)} \left[(y^T \sigma) - (y^T H y) \right] M y y^T M \right\},$$
(3)

where $M = W^{-1}$.

If the current approximation H to G^{-1} is substituted for M, Greenstadt's first formula is obtained:

$$E_{H} = \frac{1}{(y^{T}Hy)} \left\{ \sigma y^{T}H + Hy\sigma^{T} - \left[1 + \left(\frac{y^{T}\sigma}{y^{T}Hy}\right)\right] Hyy^{T}H \right\}.$$

(Throughout the remainder of the note no superscript will indicate the kth iterate and a (*) superscript will denote the (k + 1)st iterate.)

If, instead, H^* is substituted for M in Eq. (3),

$$E_{H^*} = \frac{1}{(y^T \sigma)} \left\{ -\sigma y^T H - H y \sigma^T + \left[1 + \frac{(y^T H y)}{(y^T \sigma)} \right] \sigma \sigma^T \right\}$$

is obtained. The above two correction terms appear to be similar, at least in part, to both the Davidon-Fletcher-Powell (or DFP) rank-2 correction term

$$E_{R2} = \frac{\sigma \sigma^T}{\sigma^T y} - \frac{H y y^T H}{y^T H y}$$

and the rank-1 correction term [1], [3], and [7]

$$E_{R1} = \frac{(\sigma - Hy)(\sigma - Hy)^T}{(\sigma - Hy)^T y}.$$

In fact, all four corrections terms E_H , E_{H^*} , E_{R1} , and E_{R2} give rise to algorithms that locate the exact minimum of a strictly convex quadratic objective function of N variables in N steps. They also result in a matrix H which after those N steps is exactly equal to G^{-1} . Proofs of this property, which we shall refer to as "exactness" following Broyden [1], were given for E_{R2} , E_{R1} , and E_H by Fletcher and Powell [4], Broyden [1], and Bard [6, Appendix], respectively.

It is easy to show that this property also holds for variable-metric algorithms with correction term E_{H^*} . For example, Bard's proof may be followed almost entirely, except for some obvious and trivial changes.

 E_{R2} and E_{H*} , moreover, share the additional property of preserving the positive-definiteness of the approximating matrix H. This ensures the stability of the corresponding variable-metric algorithms that search for a minimum along the direction -Hg at each step. Fletcher and Powell proved this for E_{R2} . The proof for E_{H*} follows from the observation that

$$x^{T}(E_{H^*} - E_{R2})x = x^{T}E_{H^*x} - x^{T}E_{R2}x = \frac{\left[(y^{T}Hy)(x^{T}\sigma) - (y^{T}\sigma)(x^{T}Hy)\right]^{2}}{(y^{T}\sigma)^{2}(y^{T}Hy)} \ge 0.$$

It may seem then that the iteration scheme $H^* = H + E_{H^*}$ would be less likely to generate a sequence of matrices $\{H_i\}$ that tends toward singularity than would the DFP iteration scheme $H^* = H + E_{R^2}$. One should not count this apparent improvement too heavily, for the behavior of a variable-metric algorithm and its convergence to a stationary point depend upon the sequence $\{H_i\}$ being bounded above as well as being bounded away from singularity [5].

The resemblances between the correction terms E_{R2} , E_{R1} , E_H and E_{H*} suggest that each can be written as a linear combination of the others. This is indeed the case: E_{R2} and E_{R1} can be expressed directly as weighted sums of E_H and E_{H*} , and vice versa.

(4)
$$E_{R2} = \frac{(y^{T}Hy)E_{H} + (y^{T}\sigma)E_{H^{*}}}{y^{T}Hy + y^{T}\sigma} = \frac{(y^{T}Hy)E_{H} + (y^{T}H^{*}y)E_{H^{*}}}{y^{T}Hy + y^{T}H^{*}y},$$

$$E_{R1} = \frac{(y^{T}Hy)^{2}E_{H} - (y^{T}\sigma)^{2}E_{H^{*}}}{(y^{T}Hy)^{2} - (y^{T}\sigma)^{2}} = \frac{(y^{T}Hy)^{2}E_{H} - (y^{T}H^{*}y)^{2}E_{H^{*}}}{(y^{T}Hy)^{2} - (y^{T}H^{*}y)^{2}},$$

$$E_{H} = \gamma E_{R2} + (1 - \gamma)E_{R1},$$

where

$$\gamma = \left(\frac{y^{T_{\sigma}}}{y^{T}Hy}\right).$$

It is especially interesting that the two variationally derived correction terms E_H and E_{H^*} give rise to a one-parameter family of correction terms $E = \alpha E_H + (1 - \alpha) E_{H^*}$ whose corresponding variable-metric methods are "exact." The DFP-rank-2 and rank-1 correction terms are members of this one-parameter family that correspond to particularly interesting choices for the parameter α . This family includes all symmetric variable-metric correction terms that have been published [1], [2], [3], [4], [6], [7].**

In fact, it is equivalent to the one-parameter family given by Broyden's algorithm 2 [1]. The equivalence can be obtained by setting

(6)
$$\alpha = \frac{(1 - \beta y^T \sigma) y^T H y}{y^T H y + y^T \sigma},$$

 $E_{H^*} = 1/\gamma E_{R2} + (1 - 1/\gamma) E_{R1}$

where β is Broyden's parameter.

Broyden's algorithm 1 (i.e., the rank-1 algorithm) is just a special case of his algorithm 2 [1], with $\beta = 1/(y^T H y - y^T \sigma)$; a point that seems to have been overlooked by Broyden himself.

It is also possible to obtain E_{R1} and E_{R2} directly from Eq. (3) by choice of a suitable M. For the rank-1 case a choice that works is

$$M_{R1} = H^* - H = E$$
.

However, using $M_{R1} = M$ in Eq. (3) yields $E = E_{R1}$ which has rank 1 and, hence, M_{R1} has no inverse.

^{**} Davidon's variance algorithm [3] multiplies the rank-1 correction term E_{R1} by a scalar function of $(g^THg^*/g^{*T}Hg^*)$ so as to ensure the stability of the method.

Before going further, we note that:

- (i) Formula (3) is homogeneous in M; therefore, replacing M by μ M, where μ is a scalar, has no affect on the resultant E.
- (ii) M always appears in conjunction with y in formula (3) either as My or as y^TM ; therefore, the replacement of $(y^THy) H$ by Hyy^TH and $(y^T\sigma)H^* = (y^TH^*y)H^*$ by $H^*yy^TH^*$ as terms of M has no affect on the resultant E.

Hence the substitution of either

$$M_{R1} = H^* - \frac{Hyy^T H}{y^T H y}$$

or

$$M_{R1} = H - \frac{\sigma \sigma^T}{\sigma^T y}$$

for M in Eq. (3) also yields E_{R1} .

Substitution of any of the forms of M_{R2} given below in Eq. (3) is sufficient to show that all give rise to the DFP correction term E_{R2} .

(9)
$$M_{R2} = (y^{T}Hy)^{1/2}H^{*} - (y^{T}\sigma)^{1/2}H,$$

$$M_{R2} = (y^{T}H^{*}y)^{-1/2}H^{*} - (y^{T}Hy)^{-1/2}H,$$

$$M_{R2} = H^{*} - \left(\frac{y^{T}\sigma}{y^{T}Hy}\right)^{1/2}\frac{Hyy^{T}H}{y^{T}Hy},$$

$$M_{R2} = H - \left(\frac{y^{T}Hy}{y^{T}\sigma}\right)^{1/2}\frac{\sigma\sigma^{T}}{y^{T}\sigma}.$$

Although the matrices M_{R1} and M_{R2} given by expressions (7) through (9) are, in general, nonsingular, these choices for M and hence, the corresponding W's are not necessarily positive-definite. Thus, their substitution in Eq. (3) is somewhat contrived. Just what role they play in the variational derivation of the rank-1 and DFP rank-2 methods remains confusing.

City College of the City University of New York New York, New York 10031

- 1. C. G. Broyden, "Quasi-Newton methods and their application to function minimisation,"
- Math. Comp., v. 21, 1967, pp. 368-381. MR 36 #7317.

 2. W. C. DAVIDON, Variable Metric Method for Minimization, A. E. C. Res. and Develop. Report ANL-5990 (Rev. TID-4500, 14th ed.) 1959.

 3. W. C. DAVIDON, "Variance algorithm for minimization," Comput. J., v. 10, 1968, pp. 406-
- 410. MR 36 #4790.

 4. R. FLETCHER & M. J. D. Powell, "A rapidly convergent descent method for minimization," Comput. J., v. 6, 1963, pp. 163-168. MR 27 #2096.

 5. D. GOLDFARB, "Sufficient conditions for the convergence of a variable metric algorithm,"
- Proc. Confer. on Optimization (University of Keele, 1968). (To appear.)
 6. J. Greenstadt, "Variations on variable metric methods," Math. Comp., v. 24, 1970, pp. 1-22.
 7. P. Wolfe, Another Variable Metric Method, Working Paper, 1967.